Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation (2109.13296v1)

Published 27 Sep 2021 in cs.CL

Abstract: Recent progress in generative LLMs has enabled machines to generate astonishingly realistic texts. While there are many legitimate applications of such models, there is also a rising need to distinguish machine-generated texts from human-written ones (e.g., fake news detection). However, to our best knowledge, there is currently no benchmark environment with datasets and tasks to systematically study the so-called "Turing Test" problem for neural text generation methods. In this work, we present the TuringBench benchmark environment, which is comprised of (1) a dataset with 200K human- or machine-generated samples across 20 labels {Human, GPT-1, GPT-2_small, GPT-2_medium, GPT-2_large, GPT-2_xl, GPT-2_PyTorch, GPT-3, GROVER_base, GROVER_large, GROVER_mega, CTRL, XLM, XLNET_base, XLNET_large, FAIR_wmt19, FAIR_wmt20, TRANSFORMER_XL, PPLM_distil, PPLM_gpt2}, (2) two benchmark tasks -- i.e., Turing Test (TT) and Authorship Attribution (AA), and (3) a website with leaderboards. Our preliminary experimental results using TuringBench show that FAIR_wmt20 and GPT-3 are the current winners, among all LLMs tested, in generating the most human-like indistinguishable texts with the lowest F1 score by five state-of-the-art TT detection models. The TuringBench is available at: https://turingbench.ist.psu.edu/

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Adaku Uchendu (16 papers)
  2. Zeyu Ma (20 papers)
  3. Thai Le (38 papers)
  4. Rui Zhang (1138 papers)
  5. Dongwon Lee (65 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.