Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Sparse Function on function Regression (2109.13042v1)

Published 27 Sep 2021 in stat.ME

Abstract: In functional data analysis, functional linear regression has attracted significant attention recently. Herein, we consider the case where both the response and covariates are functions. There are two available approaches for addressing such a situation: concurrent and nonconcurrent functional models. In the former, the value of the functional response at a given domain point depends only on the value of the functional regressors evaluated at the same domain point, whereas, in the latter, the functional covariates evaluated at each point of their domain have a non-null effect on the response at any point of its domain. To balance these two extremes, we propose a locally sparse functional regression model in which the functional regression coefficient is allowed (but not forced) to be exactly zero for a subset of its domain. This is achieved using a suitable basis representation of the functional regression coefficient and exploiting an overlapping group-Lasso penalty for its estimation. We introduce efficient computational strategies based on majorization-minimization algorithms and discuss appealing theoretical properties regarding the model support and consistency of the proposed estimator. We further illustrate the empirical performance of the method through simulations and two applications related to human mortality and bidding the energy market.

Summary

We haven't generated a summary for this paper yet.