Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Non-local Features for Neural Constituency Parsing (2109.12814v2)

Published 27 Sep 2021 in cs.CL

Abstract: Thanks to the strong representation power of neural encoders, neural chart-based parsers have achieved highly competitive performance by using local features. Recently, it has been shown that non-local features in CRF structures lead to improvements. In this paper, we investigate injecting non-local features into the training process of a local span-based parser, by predicting constituent n-gram non-local patterns and ensuring consistency between non-local patterns and local constituents. Results show that our simple method gives better results than the self-attentive parser on both PTB and CTB. Besides, our method achieves state-of-the-art BERT-based performance on PTB (95.92 F1) and strong performance on CTB (92.31 F1). Our parser also achieves better or competitive performance in multilingual and zero-shot cross-domain settings compared with the baseline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Leyang Cui (50 papers)
  2. Sen Yang (191 papers)
  3. Yue Zhang (620 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.