Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stacking Ensemble Approach for Supervised Video Summarization (2109.12581v4)

Published 26 Sep 2021 in cs.CV and eess.IV

Abstract: Video summarization methods are usually classified into shot-level or frame-level methods, which are individually used in a general way. This paper investigates the underlying complementarity between the frame-level and shot-level methods, and a stacking ensemble approach is proposed for supervised video summarization. Firstly, we build up a stacking model to predict both the key frame probabilities and the temporal interest segments simultaneously. The two components are then combined via soft decision fusion to obtain the final scores of each frame in the video. A joint loss function is proposed for the model training. The ablation experimental results show that the proposed method outperforms both the two corresponding individual method. Furthermore, extensive experimental results on two benchmark datasets shows its superior performance in comparison with the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yubo An (1 paper)
  2. Shenghui Zhao (1 paper)
  3. Guoqiang Zhang (57 papers)