Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams (2109.12473v5)

Published 26 Sep 2021 in cs.PL

Abstract: Probabilistic programming languages aid developers performing Bayesian inference. These languages provide programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be extended to work in a streaming context. ProbZelus showed that while delayed sampling could be effectively deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is not guaranteed to use a bounded amount of memory over the course of the execution of the program. In this paper, we present conditions on a probabilistic program's execution under which delayed sampling will execute in bounded memory. The two conditions are dataflow properties of the core operations of delayed sampling: the $m$-consumed property and the unseparated paths property. A program executes in bounded memory under delayed sampling if, and only if, it satisfies the $m$-consumed and unseparated paths properties. We propose a static analysis that abstracts over these properties to soundly ensure that any program that passes the analysis satisfies these properties, and thus executes in bounded memory under delayed sampling.

Citations (3)

Summary

We haven't generated a summary for this paper yet.