Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Deep learning tackles single-cell analysis A survey of deep learning for scRNA-seq analysis (2109.12404v1)

Published 25 Sep 2021 in q-bio.GN

Abstract: Since its selection as the method of the year in 2013, single-cell technologies have become mature enough to provide answers to complex research questions. With the growth of single-cell profiling technologies, there has also been a significant increase in data collected from single-cell profilings, resulting in computational challenges to process these massive and complicated datasets. To address these challenges, deep learning (DL) is positioning as a competitive alternative for single-cell analyses besides the traditional machine learning approaches. Here we present a processing pipeline of single-cell RNA-seq data, survey a total of 25 DL algorithms and their applicability for a specific step in the processing pipeline. Specifically, we establish a unified mathematical representation of all variational autoencoder, autoencoder, and generative adversarial network models, compare the training strategies and loss functions for these models, and relate the loss functions of these models to specific objectives of the data processing step. Such presentation will allow readers to choose suitable algorithms for their particular objective at each step in the pipeline. We envision that this survey will serve as an important information portal for learning the application of DL for scRNA-seq analysis and inspire innovative use of DL to address a broader range of new challenges in emerging multi-omics and spatial single-cell sequencing.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.