Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties (2109.12083v2)

Published 24 Sep 2021 in physics.chem-ph and stat.ML

Abstract: Symmetry considerations are at the core of the major frameworks used to provide an effective mathematical representation of atomic configurations that is then used in machine-learning models to predict the properties associated with each structure. In most cases, the models rely on a description of atom-centered environments, and are suitable to learn atomic properties, or global observables that can be decomposed into atomic contributions. Many quantities that are relevant for quantum mechanical calculations, however -- most notably the single-particle Hamiltonian matrix when written in an atomic-orbital basis -- are not associated with a single center, but with two (or more) atoms in the structure. We discuss a family of structural descriptors that generalize the very successful atom-centered density correlation features to the N-centers case, and show in particular how this construction can be applied to efficiently learn the matrix elements of the (effective) single-particle Hamiltonian written in an atom-centered orbital basis. These N-centers features are fully equivariant -- not only in terms of translations and rotations, but also in terms of permutations of the indices associated with the atoms -- and are suitable to construct symmetry-adapted machine-learning models of new classes of properties of molecules and materials.

Citations (49)

Summary

We haven't generated a summary for this paper yet.