Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimized Dynamic Mode Decomposition Model Robust to Multiplicative Noise (2109.11850v3)

Published 24 Sep 2021 in math.DS and math.OC

Abstract: Dynamic mode decomposition (DMD) is an efficient tool for decomposing spatio-temporal data into a set of low-dimensional modes, yielding the oscillation frequencies and the growth rates of physically significant modes. In this paper, we propose a novel DMD model that can be used for dynamical systems affected by multiplicative noise. We first derive a maximum a posteriori (MAP) estimator for the data-based model decomposition of a linear dynamical system corrupted by certain multiplicative noise. Applying penalty relaxation to the MAP estimator, we obtain the proposed DMD model whose epigraphical limits are the MAP estimator and the conventional optimized DMD model. We also propose an efficient alternating gradient descent method for solving the proposed DMD model, and analyze its convergence behavior. The proposed model is demonstrated on both the synthetic data and the numerically generated one-dimensional combustor data, and is shown to have superior reconstruction properties compared to state-of-the-art DMD models. Considering that multiplicative noise is ubiquitous in numerous dynamical systems, the proposed DMD model opens up new possibilities for accurate data-based modal decomposition.

Summary

We haven't generated a summary for this paper yet.