Theory of overparametrization in quantum neural networks (2109.11676v1)
Abstract: The prospect of achieving quantum advantage with Quantum Neural Networks (QNNs) is exciting. Understanding how QNN properties (e.g., the number of parameters $M$) affect the loss landscape is crucial to the design of scalable QNN architectures. Here, we rigorously analyze the overparametrization phenomenon in QNNs with periodic structure. We define overparametrization as the regime where the QNN has more than a critical number of parameters $M_c$ that allows it to explore all relevant directions in state space. Our main results show that the dimension of the Lie algebra obtained from the generators of the QNN is an upper bound for $M_c$, and for the maximal rank that the quantum Fisher information and Hessian matrices can reach. Underparametrized QNNs have spurious local minima in the loss landscape that start disappearing when $M\geq M_c$. Thus, the overparametrization onset corresponds to a computational phase transition where the QNN trainability is greatly improved by a more favorable landscape. We then connect the notion of overparametrization to the QNN capacity, so that when a QNN is overparametrized, its capacity achieves its maximum possible value. We run numerical simulations for eigensolver, compilation, and autoencoding applications to showcase the overparametrization computational phase transition. We note that our results also apply to variational quantum algorithms and quantum optimal control.
- M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning (MIT Press, 2018).
- A. L. Blum and R. L. Rivest, Training a 3-node neural network is np-complete, Neural Networks 5, 117 (1992).
- A. Daniely, Complexity theoretic limitations on learning halfspaces, in Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (2016) pp. 105–117.
- D. Boob, S. S. Dey, and G. Lan, Complexity of training relu neural network, Discrete Optimization , 100620 (2020).
- Z. Allen-Zhu, Y. Li, and Z. Song, A convergence theory for deep learning via over-parameterization, in International Conference on Machine Learning (PMLR, 2019) pp. 242–252.
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
- M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine learning, Contemporary Physics 56, 172 (2015).
- H.-Y. Huang, R. Kueng, and J. Preskill, Information-theoretic bounds on quantum advantage in machine learning, Phys. Rev. Lett. 126, 190505 (2021a).
- J. M. Kübler, S. Buchholz, and B. Schölkopf, The inductive bias of quantum kernels, arXiv preprint arXiv:2106.03747 (2021).
- L. Bittel and M. Kliesch, Training variational quantum algorithms is np-hard, Phys. Rev. Lett. 127, 120502 (2021).
- I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15, 1273 (2019).
- E. Farhi and H. Neven, Classification with quantum neural networks on near term processors, arXiv preprint arXiv:1802.06002 (2018).
- D. Wierichs, C. Gogolin, and M. Kastoryano, Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer, Physical Review Research 2, 043246 (2020).
- C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement induced barren plateaus, arXiv preprint arXiv:2010.15968 (2020).
- M. Cerezo and P. J. Coles, Higher order derivatives of quantum neural networks with barren plateaus, Quantum Science and Technology 6, 035006 (2021).
- P. Huembeli and A. Dauphin, Characterizing the loss landscape of variational quantum circuits, Quantum Science and Technology 6, 025011 (2021).
- D. S. Franca and R. Garcia-Patron, Limitations of optimization algorithms on noisy quantum devices, arXiv preprint arXiv:2009.05532 (2020).
- S. Zhang and W. Cui, Overparametrization in qaoa, Written Report (2020).
- B. T. Kiani, S. Lloyd, and R. Maity, Learning unitaries by gradient descent, arXiv preprint arXiv:2001.11897 (2020).
- E. R. Anschuetz, Critical points in hamiltonian agnostic variational quantum algorithms, arXiv preprint arXiv:2109.06957 (2021).
- D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall/CRC Applied Mathematics & Nonlinear Science (Taylor & Francis, 2007).
- R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in quantum systems theory, Journal of mathematical physics 52, 113510 (2011).
- T. Haug, K. Bharti, and M. Kim, Capacity and quantum geometry of parametrized quantum circuits, arXiv preprint arXiv:2102.01659 (2021).
- J. Kim, J. Kim, and D. Rosa, Universal effectiveness of high-depth circuits in variational eigenproblems, Physical Review Research 3, 023203 (2021).
- D. d’Alessandro, Introduction to quantum control and dynamics (CRC press, 2007).
- R. Chakrabarti and H. Rabitz, Quantum control landscapes, International Reviews in Physical Chemistry 26, 671 (2007).
- M. Larocca, E. Calzetta, and D. A. Wisniacki, Exploiting landscape geometry to enhance quantum optimal control, Phys. Rev. A 101, 023410 (2020a).
- M. Larocca, E. Calzetta, and D. Wisniacki, Fourier compression: A customization method for quantum control protocols, Phys. Rev. A 102, 033108 (2020b).
- E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028 (2014).
- D. Wecker, M. B. Hastings, and M. Troyer, Progress towards practical quantum variational algorithms, Phys. Rev. A 92, 042303 (2015).
- M. E. Morales, J. Biamonte, and Z. Zimborás, On the universality of the quantum approximate optimization algorithm, Quantum Information Processing 19, 1 (2020).
- S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Advanced Quantum Technologies 2, 1900070 (2019).
- R. Cheng, Quantum geometric tensor (fubini-study metric) in simple quantum system: A pedagogical introduction, arXiv preprint arXiv:1012.1337 (2010).
- J. J. Meyer, Fisher Information in Noisy Intermediate-Scale Quantum Applications, Quantum 5, 539 (2021a).
- B. Koczor and S. C. Benjamin, Quantum natural gradient generalised to non-unitary circuits, arXiv preprint arXiv:1912.08660 (2019).
- T. Haug and M. Kim, Natural parameterized quantum circuit, arXiv preprint arXiv:2107.14063 (2021).
- J. Kim and Y. Oz, Quantum energy landscape and vqa optimization, arXiv preprint arXiv:2107.10166 (2021).
- M. Dalgaard, J. Sherson, and F. Motzoi, Predicting quantum dynamical cost landscapes with deep learning, arXiv preprint arXiv:2107.00008 (2021).
- K. W. Moore and H. Rabitz, Exploring constrained quantum control landscapes, The Journal of chemical physics 137, 134113 (2012).
- M. Larocca, P. M. Poggi, and D. A. Wisniacki, Quantum control landscape for a two-level system near the quantum speed limit, Journal of Physics A: Mathematical and Theoretical 51, 385305 (2018).
- P. J. Coles, Seeking quantum advantage for neural networks, Nature Computational Science 1, 389 (2021).
- J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoencoders for efficient compression of quantum data, Quantum Science and Technology 2, 045001 (2017).
- C. Bravo-Prieto, D. García-Martín, and J. I. Latorre, Quantum singular value decomposer, Phys. Rev. A 101, 062310 (2020a).
- F. T. Chong, D. Franklin, and M. Martonosi, Programming languages and compiler design for realistic quantum hardware, Nature 549, 180 (2017).
- N. Chan and M. K. Kwong, Hermitian matrix inequalities and a conjecture, The American Mathematical Monthly 92 (1985).
- J. P. Peterson, H. Katiyar, and R. Laflamme, Fast simulation of magnetic field gradients for optimization of pulse sequences, arXiv preprint arXiv:2006.10133 (2020).
- M. Larocca and D. Wisniacki, Krylov-subspace approach for the efficient control of quantum many-body dynamics, Physical Review A 103, 023107 (2021).
- M. Hsieh, R. Wu, and H. Rabitz, Topology of the quantum control landscape for observables, The Journal of chemical physics 130, 104109 (2009).
- T.-S. Ho, J. Dominy, and H. Rabitz, Landscape of unitary transformations in controlled quantum dynamics, Physical Review A 79, 013422 (2009).
- J. J. Meyer, Fisher Information in Noisy Intermediate-Scale Quantum Applications, Quantum 5, 539 (2021b).
- D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015).
- A. Mari, T. R. Bromley, and N. Killoran, Estimating the gradient and higher-order derivatives on quantum hardware, Phys. Rev. A 103, 012405 (2021).