Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Random Quantum Maps and Their Associated Quantum Markov Chains (2109.11529v3)

Published 23 Sep 2021 in math.OA

Abstract: The notion of quantum family of maps' (QFM) has been defined by Piotr Soltan as a noncommutative analogue ofparameterized family of continuous maps' between locally compact spaces. A QFM between C*-algebras $B,A$, is given by a pair $(C,\phi)$ where $C$ is a C*-algebra and $\phi:B\rightarrow A\check{\otimes}C$ is a $*$-morphism. The main goal of this note, is to introduce the notion of random quantum map' (RQM), which is a noncommutative analogue ofrandom continuous map' between compact spaces. We define a RQM between $B,A$, to be given by a triple $(C,\phi,\nu)$ where $(C,\phi)$ is a QFM and $\nu$ a state (normalized positive linear functional) on $C$. Our first application of RQMs takes place in theory of completely positive maps (CPM): RQMs give rise canonically to a class of CPMs which we call implemented CPMs. We consider some partial results about the natural and important problem of characterization of implemented CPMs. For instance, using Stinespring's Theorem, we show that any CPM from $B$ to $A$ is implemented if $A$ is finite-dimensional. Our second application of RQMs takes place in theory of quantum stochastic processes: We show that iterations of any RQM with $B=A$, gives rise to a quantum Markov chain in a sense introduced by Luigi Accardi.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.