Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Dynamics from Noisy Measurements using Deep Learning with a Runge-Kutta Constraint (2109.11446v1)

Published 23 Sep 2021 in cs.LG and math.DS

Abstract: Measurement noise is an integral part while collecting data of a physical process. Thus, noise removal is a necessary step to draw conclusions from these data, and it often becomes quite essential to construct dynamical models using these data. We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements. In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method. Precisely, we aim at learning a neural network that implicitly represents the data and an additional neural network that models the vector fields of the dependent variables. We combine these two networks by enforcing the constraint that the data at the next time-steps can be given by following a numerical integration scheme such as the fourth-order Runge-Kutta scheme. The proposed framework to learn a model predicting the vector field is highly effective under noisy measurements. The approach can handle scenarios where dependent variables are not available at the same temporal grid. We demonstrate the effectiveness of the proposed method to learning models using data obtained from various differential equations. The proposed approach provides a promising methodology to learn dynamic models, where the first-principle understanding remains opaque.

Citations (8)

Summary

We haven't generated a summary for this paper yet.