Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-phase segmentation for intensity inhomogeneous images by the Allen-Cahn Local Binary Fitting Model (2109.11262v1)

Published 23 Sep 2021 in math.NA and cs.NA

Abstract: This paper proposes a new variational model by integrating the Allen-Cahn term with a local binary fitting energy term for segmenting images with intensity inhomogeneity and noise. An inhomogeneous graph Laplacian initialization method (IGLIM) is developed to give the initial contour for two-phase image segmentation problems. To solve the Allen-Cahn equation derived from the variational model, we adopt the exponential time differencing (ETD) method for temporal discretization, and the central finite difference method for spatial discretization. The energy stability of proposed numerical schemes can be proved. Experiments on various images demonstrate the necessity and superiority of proper initialization and verify the capability of our model for two-phase segmentation of images with intensity inhomogeneity and noise.

Citations (11)

Summary

We haven't generated a summary for this paper yet.