Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 39 TPS Pro
GPT-5 Medium 36 TPS
GPT-5 High 36 TPS Pro
GPT-4o 74 TPS
GPT OSS 120B 399 TPS Pro
Kimi K2 184 TPS Pro
2000 character limit reached

Bayesian Optimization with Clustering and Rollback for CNN Auto Pruning (2109.10591v2)

Published 22 Sep 2021 in cs.LG and cs.AI

Abstract: Pruning is an effective technique for convolutional neural networks (CNNs) model compression, but it is difficult to find the optimal pruning policy due to the large design space. To improve the usability of pruning, many auto pruning methods have been developed. Recently, Bayesian optimization (BO) has been considered to be a competitive algorithm for auto pruning due to its solid theoretical foundation and high sampling efficiency. However, BO suffers from the curse of dimensionality. The performance of BO deteriorates when pruning deep CNNs, since the dimension of the design spaces increase. We propose a novel clustering algorithm that reduces the dimension of the design space to speed up the searching process. Subsequently, a rollback algorithm is proposed to recover the high-dimensional design space so that higher pruning accuracy can be obtained. We validate our proposed method on ResNet, MobileNetV1, and MobileNetV2 models. Experiments show that the proposed method significantly improves the convergence rate of BO when pruning deep CNNs with no increase in running time. The source code is available at https://github.com/fanhanwei/BOCR.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.