Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Gibbs partition function with quantumClifford sampling (2109.10486v1)

Published 22 Sep 2021 in quant-ph

Abstract: The partition function is an essential quantity in statistical mechanics, and its accurate computation is a key component of any statistical analysis of quantum system and phenomenon. However, for interacting many-body quantum systems, its calculation generally involves summing over an exponential number of terms and can thus quickly grow to be intractable. Accurately and efficiently estimating the partition function of its corresponding system Hamiltonian then becomes the key in solving quantum many-body problems. In this paper we develop a hybrid quantum-classical algorithm to estimate the partition function, utilising a novel Clifford sampling technique. Note that previous works on quantum estimation of partition functions require $\mathcal{O}(1/\epsilon\sqrt{\Delta})$-depth quantum circuits~\cite{Arunachalam2020Gibbs, Ashley2015Gibbs}, where $\Delta$ is the minimum spectral gap of stochastic matrices and $\epsilon$ is the multiplicative error. Our algorithm requires only a shallow $\mathcal{O}(1)$-depth quantum circuit, repeated $\mathcal{O}(1/\epsilon2)$ times, to provide a comparable $\epsilon$ approximation. Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.

Summary

We haven't generated a summary for this paper yet.