Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Approximation Algorithm for a General Class of Multi-Parametric Optimization Problems (2109.10076v2)

Published 21 Sep 2021 in math.OC and cs.DS

Abstract: In a widely-studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. Then, the goal is to provide an optimal solution set, i.e., a set containing an optimal solution for each non-parametric problem obtained by fixing a parameter vector. For many multi-parametric optimization problems, however, an optimal solution set of minimum cardinality can contain super-polynomially many solutions. Consequently, no polynomial-time exact algorithms can exist for these problems even if $\textsf{P}=\textsf{NP}$. We propose an approximation method that is applicable to a general class of multi-parametric optimization problems and outputs a set of solutions with cardinality polynomial in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric version and provides an approximation guarantee that is arbitrarily close to the approximation guarantee of the approximation algorithm for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, our algorithm is an FPTAS. Further, we show that, for any given approximation guarantee, the minimum cardinality of an approximation set is, in general, not $\ell$-approximable for any natural number $\ell$ less or equal to the number of parameters, and we discuss applications of our results to classical multi-parametric combinatorial optimizations problems. In particular, we obtain an FPTAS for the multi-parametric minimum $s$-$t$-cut problem, an FPTAS for the multi-parametric knapsack problem, as well as an approximation algorithm for the multi-parametric maximization of independence systems problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.