Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Text Games for Reinforcement Learning informed by Natural Language (2109.09478v1)

Published 20 Sep 2021 in cs.AI

Abstract: Reinforcement Learning has shown success in a number of complex virtual environments. However, many challenges still exist towards solving problems with natural language as a core component. Interactive Fiction Games (or Text Games) are one such problem type that offer a set of partially observable environments where natural language is required as part of the reinforcement learning solutions. Therefore, this survey's aim is to assist in the development of new Text Game problem settings and solutions for Reinforcement Learning informed by natural language. Specifically, this survey summarises: 1) the challenges introduced in Text Game Reinforcement Learning problems, 2) the generation tools for evaluating Text Games and the subsequent environments generated and, 3) the agent architectures currently applied are compared to provide a systematic review of benchmark methodologies and opportunities for future researchers.

Citations (16)

Summary

We haven't generated a summary for this paper yet.