Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the rogue wave pattern triggered from Gaussian perturbations by deep learning (2109.08909v2)

Published 18 Sep 2021 in cs.CV, cs.NA, eess.IV, and math.NA

Abstract: Weak Gaussian perturbations on a plane wave background could trigger lots of rogue waves, due to modulational instability. Numerical simulations showed that these rogue waves seemed to have similar unit structure. However, to the best of our knowledge, there is no relative result to prove that these rogue waves have the similar patterns for different perturbations, partly due to that it is hard to measure the rogue wave pattern automatically. In this work, we address these problems from the perspective of computer vision via using deep neural networks. We propose a Rogue Wave Detection Network (RWD-Net) model to automatically and accurately detect RWs on the images, which directly indicates they have the similar computer vision patterns. For this purpose, we herein meanwhile have designed the related dataset, termed as Rogue Wave Dataset-$10$K (RWD-$10$K), which has $10,191$ RW images with bounding box annotations for each RW unit. In our detection experiments, we get $99.29\%$ average precision on the test splits of the RWD-$10$K dataset. Finally, we derive our novel metric, the density of RW units (DRW), to characterize the evolution of Gaussian perturbations and obtain the statistical results on them.

Citations (2)

Summary

We haven't generated a summary for this paper yet.