Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Error Type Annotation for Arabic (2109.08068v1)

Published 16 Sep 2021 in cs.CL

Abstract: We present ARETA, an automatic error type annotation system for Modern Standard Arabic. We design ARETA to address Arabic's morphological richness and orthographic ambiguity. We base our error taxonomy on the Arabic Learner Corpus (ALC) Error Tagset with some modifications. ARETA achieves a performance of 85.8% (micro average F1 score) on a manually annotated blind test portion of ALC. We also demonstrate ARETA's usability by applying it to a number of submissions from the QALB 2014 shared task for Arabic grammatical error correction. The resulting analyses give helpful insights on the strengths and weaknesses of different submissions, which is more useful than the opaque M2 scoring metrics used in the shared task. ARETA employs a large Arabic morphological analyzer, but is completely unsupervised otherwise. We make ARETA publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Riadh Belkebir (1 paper)
  2. Nizar Habash (66 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com