Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse logistic functional principal component analysis for binary data

Published 16 Sep 2021 in stat.ME | (2109.08009v1)

Abstract: Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method to handle the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient algorithm is developed for the optimization of the penalized likelihood using majorization-minimization (MM) algorithm. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.