Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complementarity of Data Selection and Fine Tuning for Domain Adaptation (2109.07591v1)

Published 15 Sep 2021 in cs.CL and cs.LG

Abstract: Domain adaptation of neural networks commonly relies on three training phases: pretraining, selected data training and then fine tuning. Data selection improves target domain generalization by training further on pretraining data identified by relying on a small sample of target domain data. This work examines the benefit of data selection for LLMing and machine translation. Our experiments assess the complementarity of selection with fine tuning and result in practical recommendations: (i) selected data must be similar to the fine-tuning domain but not so much as to erode the complementary effect of fine-tuning; (ii) there is a trade-off between selecting little data for fast but limited progress or much data for slow but long lasting progress; (iii) data selection can be applied early during pretraining, with performance gains comparable to long pretraining session; (iv) data selection from domain classifiers is often more effective than the popular contrastive data selection method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dan Iter (16 papers)
  2. David Grangier (55 papers)
Citations (8)