Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Robust Contrastive Active Learning with Feature-guided Query Strategies (2109.06873v2)

Published 13 Sep 2021 in cs.LG and cs.AI

Abstract: We introduce supervised contrastive active learning (SCAL) and propose efficient query strategies in active learning based on the feature similarity (featuresim) and principal component analysis based feature-reconstruction error (fre) to select informative data samples with diverse feature representations. We demonstrate our proposed method achieves state-of-the-art accuracy, model calibration and reduces sampling bias in an active learning setup for balanced and imbalanced datasets on image classification tasks. We also evaluate robustness of model to distributional shift derived from different query strategies in active learning setting. Using extensive experiments, we show that our proposed approach outperforms high performing compute-intensive methods by a big margin resulting in 9.9% lower mean corruption error, 7.2% lower expected calibration error under dataset shift and 8.9% higher AUROC for out-of-distribution detection.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.