Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

On the approximation of basins of attraction using deep neural networks (2109.06564v1)

Published 14 Sep 2021 in math.DS and physics.comp-ph

Abstract: The basin of attraction is the set of initial points that will eventually converge to some attracting set. Its knowledge is important in understanding the dynamical behavior of a given dynamical system of interest. In this work, we address the problem of reconstructing the basins of attraction of a multistable system, using only labeled data. To this end, we view this problem as a classification task and use a deep neural network as a classifier for predicting the attractor that corresponds to any given initial condition. Additionally, we provide a method for obtaining an approximation of the basin boundary of the underlying system, using the trained classification model. Finally, we provide evidence relating the complexity of the structure of the basins of attraction with the quality of the obtained reconstructions, via the concept of basin entropy. We demonstrate the application of the proposed method on the Lorenz system in a bistable regime.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.