Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-modal Motion Prediction with Transformer-based Neural Network for Autonomous Driving (2109.06446v1)

Published 14 Sep 2021 in cs.RO

Abstract: Predicting the behaviors of other agents on the road is critical for autonomous driving to ensure safety and efficiency. However, the challenging part is how to represent the social interactions between agents and output different possible trajectories with interpretability. In this paper, we introduce a neural prediction framework based on the Transformer structure to model the relationship among the interacting agents and extract the attention of the target agent on the map waypoints. Specifically, we organize the interacting agents into a graph and utilize the multi-head attention Transformer encoder to extract the relations between them. To address the multi-modality of motion prediction, we propose a multi-modal attention Transformer encoder, which modifies the multi-head attention mechanism to multi-modal attention, and each predicted trajectory is conditioned on an independent attention mode. The proposed model is validated on the Argoverse motion forecasting dataset and shows state-of-the-art prediction accuracy while maintaining a small model size and a simple training process. We also demonstrate that the multi-modal attention module can automatically identify different modes of the target agent's attention on the map, which improves the interpretability of the model.

Citations (100)

Summary

We haven't generated a summary for this paper yet.