Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Long Short-Term Dependencies to Infer Shot Influence in Badminton Matches (2109.06431v1)

Published 14 Sep 2021 in cs.LG and cs.AI

Abstract: Identifying significant shots in a rally is important for evaluating players' performance in badminton matches. While there are several studies that have quantified player performance in other sports, analyzing badminton data is remained untouched. In this paper, we introduce a badminton language to fully describe the process of the shot and propose a deep learning model composed of a novel short-term extractor and a long-term encoder for capturing a shot-by-shot sequence in a badminton rally by framing the problem as predicting a rally result. Our model incorporates an attention mechanism to enable the transparency of the action sequence to the rally result, which is essential for badminton experts to gain interpretable predictions. Experimental evaluation based on a real-world dataset demonstrates that our proposed model outperforms the strong baselines. The source code is publicly available at https://github.com/yao0510/Shot-Influence.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com