Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One Down, 699 to Go: or, synthesising compositional desugarings (2109.06114v1)

Published 13 Sep 2021 in cs.PL

Abstract: Programming or scripting languages used in real-world systems are seldom designed with a formal semantics in mind from the outset. Therefore, developing well-founded analysis tools for these systems requires reverse-engineering a formal semantics as a first step. This can take months or years of effort. Can we (at least partially) automate this process? Though desirable, automatically reverse-engineering semantics rules from an implementation is very challenging, as found by Krishnamurthi et al. [2019]. In this paper, we highlight that scaling methods with the size of the language is very difficult due to state space explosion, so we propose to learn semantics incrementally. We give a formalisation of Krishnamurthi et al.'s desugaring learning framework in order to clarify the assumptions necessary for an incremental learning algorithm to be feasible. We show that this reformulation allows us to extend the search space and express rules that Krishnamurthi et al. described as challenging, while still retaining feasibility. We evaluate enumerative synthesis as a baseline algorithm, and demonstrate that, with our reformulation of the problem, it is possible to learn correct desugaring rules for the example source and core languages proposed by Krishnamurthi et al., in most cases identical to the intended rules. In addition, with user guidance, our system was able to synthesize rules for desugaring list comprehensions and try/catch/finally constructs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sándor Bartha (2 papers)
  2. James Cheney (62 papers)
  3. Vaishak Belle (59 papers)

Summary

We haven't generated a summary for this paper yet.