Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Language-Dependent Ethnic Bias in BERT (2109.05704v2)

Published 13 Sep 2021 in cs.CL and cs.AI

Abstract: BERT and other large-scale LLMs (LMs) contain gender and racial bias. They also exhibit other dimensions of social bias, most of which have not been studied in depth, and some of which vary depending on the language. In this paper, we study ethnic bias and how it varies across languages by analyzing and mitigating ethnic bias in monolingual BERT for English, German, Spanish, Korean, Turkish, and Chinese. To observe and quantify ethnic bias, we develop a novel metric called Categorical Bias score. Then we propose two methods for mitigation; first using a multilingual model, and second using contextual word alignment of two monolingual models. We compare our proposed methods with monolingual BERT and show that these methods effectively alleviate the ethnic bias. Which of the two methods works better depends on the amount of NLP resources available for that language. We additionally experiment with Arabic and Greek to verify that our proposed methods work for a wider variety of languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jaimeen Ahn (3 papers)
  2. Alice Oh (81 papers)
Citations (84)