Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection (2109.05468v1)

Published 12 Sep 2021 in cs.LG and stat.ML

Abstract: Gradient Boosting Machines (GBM) are among the go-to algorithms on tabular data, which produce state of the art results in many prediction tasks. Despite its popularity, the GBM framework suffers from a fundamental flaw in its base learners. Specifically, most implementations utilize decision trees that are typically biased towards categorical variables with large cardinalities. The effect of this bias was extensively studied over the years, mostly in terms of predictive performance. In this work, we extend the scope and study the effect of biased base learners on GBM feature importance (FI) measures. We show that although these implementation demonstrate highly competitive predictive performance, they still, surprisingly, suffer from bias in FI. By utilizing cross-validated (CV) unbiased base learners, we fix this flaw at a relatively low computational cost. We demonstrate the suggested framework in a variety of synthetic and real-world setups, showing a significant improvement in all GBM FI measures while maintaining relatively the same level of prediction accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Afek Ilay Adler (1 paper)
  2. Amichai Painsky (21 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.