Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Variable Selection via the Knockoff Filter (2109.05402v3)

Published 12 Sep 2021 in stat.ML, cs.CR, cs.DB, cs.IT, cs.LG, and math.IT

Abstract: The knockoff filter, recently developed by Barber and Candes, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.

Citations (2)

Summary

We haven't generated a summary for this paper yet.