Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rankin-Selberg convolutions for $\mathrm{GL}(n)\times \mathrm{GL}(n)$ and $\mathrm{GL}(n)\times \mathrm{GL}(n-1)$ for principal series representations (2109.05272v2)

Published 11 Sep 2021 in math.RT

Abstract: Let $\mathsf k$ be a local field. Let $I_\nu$ and $I_{\nu'}$ be smooth principal series representations of $\mathrm{GL}n(\mathsf k)$ and $\mathrm{GL}{n-1}(\mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_\nu\times I_{\nu'}\rightarrow \mathbb C$ with a certain invariance property. We study integrals over a certain open orbit that also yield a continuous bilinear map $I_\nu\times I_{\nu'}\rightarrow \mathbb C$ with the same invariance property, and show that these integrals equal the Rankin-Selberg integrals up to an explicit constant. Similar results are also obtained for Rankin-Selberg integrals for $\mathrm{GL}_n(\mathsf k)\times \mathrm{GL}_n(\mathsf k)$.

Summary

We haven't generated a summary for this paper yet.