Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Optimal bounds for bit-sizes of stationary distributions in finite Markov chains (2109.04976v1)

Published 10 Sep 2021 in math.CO, cs.GT, and math.PR

Abstract: An irreducible stochastic matrix with rational entries has a stationary distribution given by a vector of rational numbers. We give an upper bound on the lowest common denominator of the entries of this vector. Bounds of this kind are used to study the complexity of algorithms for solving stochastic mean payoff games. They are usually derived using the Hadamard inequality, but this leads to suboptimal results. We replace the Hadamard inequality with the Markov chain tree formula in order to obtain optimal bounds. We also adapt our approach to obtain bounds on the absorption probabilities of finite Markov chains and on the gains and bias vectors of Markov chains with rewards.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube