Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copy-Move Image Forgery Detection Based on Evolving Circular Domains Coverage (2109.04381v3)

Published 9 Sep 2021 in cs.CV

Abstract: The aim of this paper is to improve the accuracy of copy-move forgery detection (CMFD) in image forensics by proposing a novel scheme and the main contribution is evolving circular domains coverage (ECDC) algorithm. The proposed scheme integrates both block-based and keypoint-based forgery detection methods. Firstly, the speed-up robust feature (SURF) in log-polar space and the scale invariant feature transform (SIFT) are extracted from an entire image. Secondly, generalized 2 nearest neighbor (g2NN) is employed to get massive matched pairs. Then, random sample consensus (RANSAC) algorithm is employed to filter out mismatched pairs, thus allowing rough localization of counterfeit areas. To present these forgery areas more accurately, we propose the efficient and accurate ECDC algorithm to present them. This algorithm can find satisfactory threshold areas by extracting block features from jointly evolving circular domains, which are centered on matched pairs. Finally, morphological operation is applied to refine the detected forgery areas. Experimental results indicate that the proposed CMFD scheme can achieve better detection performance under various attacks compared with other state-of-the-art CMFD schemes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.