Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Time Domain Based Upper-Limb Prosthesis Control using Incremental Learning Approach (2109.04194v3)

Published 25 Aug 2021 in cs.HC and eess.SP

Abstract: The upper limb of the body is a vital for various kind of activities for human. The complete or partial loss of the upper limb would lead to a significant impact on daily activities of the amputees. EMG carries important information of human physique which helps to decode the various functionalities of human arm. EMG signal based bionics and prosthesis have gained huge research attention over the past decade. Conventional EMG-PR based prosthesis struggles to give accurate performance due to off-line training used and incapability to compensate for electrode position shift and change in arm position. This work proposes online training and incremental learning based system for upper limb prosthetic application. This system consists of ADS1298 as AFE (analog front end) and a 32 bit arm cortex-m4 processor for DSP (digital signal processing). The system has been tested for both intact and amputated subjects. Time derivative moment based features have been implemented and utilized for effective pattern classification. Initially, system have been trained for four classes using the on-line training process later on the number of classes have been incremented on user demand till eleven, and system performance has been evaluated. The system yielded a completion rate of 100% for healthy and amputated subjects when four motions have been considered. Further 94.33% and 92% completion rate have been showcased by the system when the number of classes increased to eleven for healthy and amputees respectively. The motion efficacy test is also evaluated for all the subjects. The highest efficacy rate of 91.23% and 88.64% are observed for intact and amputated subjects respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and O. C. Aszmann, “The extraction of neural information from the surface emg for the control of upper-limb prostheses: emerging avenues and challenges,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 4, pp. 797–809, 2014.
  2. S. Pancholi, J. P. Wachs, and B. S. Duerstock, “Use of artificial intelligence techniques to assist individuals with physical disabilities,” Annual Review of Biomedical Engineering, vol. 26, 2023.
  3. S. Chandra, M. Hayashibe, and A. Thondiyath, “Muscle fatigue induced hand tremor clustering in dynamic laparoscopic manipulation,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.
  4. Q. Li, Z. Luo, and J. Zheng, “A new deep anomaly detection-based method for user authentication using multichannel surface emg signals of hand gestures,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
  5. E. Nsugbe, “Brain-machine and muscle-machine bio-sensing methods for gesture intent acquisition in upper-limb prosthesis control: a review,” Journal of Medical Engineering & Technology, vol. 45, no. 2, pp. 115–128, 2021.
  6. N. N. Unanyan and A. A. Belov, “Design of upper limb prosthesis using real-time motion detection method based on emg signal processing,” Biomedical Signal Processing and Control, vol. 70, p. 103062, 2021.
  7. S. Pancholi and A. Giri, “Advancing brain-computer interface system performance in hand trajectory estimation with neurokinect,” arXiv preprint arXiv:2308.08654, 2023.
  8. A. K. Kirby, S. Pancholi, Z. Anderson, C. Chesler, T. H. Everett IV, and B. S. Duerstock, “Time and frequency domain analysis of physiological features during autonomic dysreflexia after spinal cord injury,” Frontiers in Neuroscience, vol. 17, 2023.
  9. A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard, and Y. Laurillau, “Emg feature evaluation for improving myoelectric pattern recognition robustness,” Expert Systems with applications, vol. 40, no. 12, pp. 4832–4840, 2013.
  10. A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction and selection for emg signal classification,” Expert systems with applications, vol. 39, no. 8, pp. 7420–7431, 2012.
  11. S. Pancholi, A. Giri, A. Jain, L. Kumar, and S. Roy, “Source aware deep learning framework for hand kinematic reconstruction using eeg signal,” IEEE Transactions on Cybernetics, 2022.
  12. N. Wang, K. Lao, and X. Zhang, “Design and myoelectric control of an anthropomorphic prosthetic hand,” Journal of Bionic Engineering, vol. 14, no. 1, pp. 47–59, 2017.
  13. F. Duan, L. Dai, W. Chang, Z. Chen, C. Zhu, and W. Li, “semg-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform,” IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1923–1934, 2016.
  14. S. Pancholi, A. M. Joshi, and D. Joshi, “Dlpr: Deep learning-based enhanced pattern recognition frame-work for improved myoelectric prosthesis control,” IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 4, pp. 991–999, 2022.
  15. S. Pancholi and A. M. Joshi, “Time derivative moments based feature extraction approach for recognition of upper limb motions using emg,” IEEE Sensors Letters, 2019.
  16. O. W. Samuel, H. Zhou, X. Li, H. Wang, H. Zhang, A. K. Sangaiah, and G. Li, “Pattern recognition of electromyography signals based on novel time domain features for amputees’ limb motion classification,” Computers & Electrical Engineering, vol. 67, pp. 646–655, 2018.
  17. A. Subasi, “Classification of emg signals using pso optimized svm for diagnosis of neuromuscular disorders,” Computers in biology and medicine, vol. 43, no. 5, pp. 576–586, 2013.
  18. S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle, S. Fateh, T. Burger, Q. Huang, and L. Benini, “A versatile embedded platform for emg acquisition and gesture recognition,” IEEE transactions on biomedical circuits and systems, vol. 9, no. 5, pp. 620–630, 2015.
  19. Z. Lu, X. Chen, X. Zhang, K.-Y. Tong, and P. Zhou, “Real-time control of an exoskeleton hand robot with myoelectric pattern recognition,” International journal of neural systems, vol. 27, no. 05, p. 1750009, 2017.
  20. A. Vijayvargiya, P. Singh, R. Kumar, and N. Dey, “Hardware implementation for lower limb surface emg measurement and analysis using explainable ai for activity recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
  21. S. Pancholi and A. M. Joshi, “Advanced energy kernel-based feature extraction scheme for improved emg-pr-based prosthesis control against force variation,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3819–3828, 2020.
  22. ——, “Portable emg data acquisition module for upper limb prosthesis application,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3436–3443, 2018.
  23. ——, “Electromyography-based hand gesture recognition system for upper limb amputees,” IEEE Sensors Letters, vol. 3, no. 3, pp. 1–4, 2019.
  24. J. He, H. Luo, J. Jia, J. T. Yeow, and N. Jiang, “Wrist and finger gesture recognition with single-element a-mode ultrasound signal: A comparison with single-channel surface electromyogram,” IEEE Transactions on Biomedical Engineering, 2018.
  25. S. Pancholi and A. M. Joshi, “Improved classification scheme using fused wavelet packet transform based features for intelligent myoelectric prostheses,” IEEE Transactions on Industrial Electronics, pp. 1–1, 2019.
  26. S. Pancholi and A. M. Joshi, “Intelligent upper-limb prosthetic control (iulp) with novel feature extraction method for pattern recognition using emg,” Journal of Mechanics in Medicine and Biology, vol. 21, no. 06, p. 2150043, 2021.
  27. J. Xu, C. Xu, B. Zou, Y. Y. Tang, J. Peng, and X. You, “New incremental learning algorithm with support vector machines,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.
  28. S. Pancholi and A. M. Joshi, “Electromyography-based hand gesture recognition system for upper limb amputees,” IEEE Sensors Letters, vol. 3, no. 3, pp. 1–4, 2019.
  29. N. Duan, L.-Z. Liu, X.-J. Yu, Q. Li, and S.-C. Yeh, “Classification of multichannel surface-electromyography signals based on convolutional neural networks,” Journal of Industrial Information Integration, 2018.
  30. A. Krasoulis and K. Nazarpour, “Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis,” Scientific reports, vol. 10, no. 1, pp. 1–10, 2020.
  31. A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal processing using hyperdimensional computing: Network templates for combined learning and classification of exg signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143, 2018.
  32. F. Duan and L. Dai, “Recognizing the gradual changes in semg characteristics based on incremental learning of wavelet neural network ensemble,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 4276–4286, 2016.
  33. S. A. Raurale, J. McAllister, and J. M. del Rincon, “Real-time embedded emg signal analysis for wrist-hand pose identification,” IEEE Transactions on Signal Processing, vol. 68, pp. 2713–2723, 2020.
  34. A. Belyea, K. Englehart, and E. Scheme, “Fmg vs emg: A comparison of usability for real-time pattern recognition based control,” IEEE Transactions on Biomedical Engineering, 2019.
  35. M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini, “Robust real-time embedded emg recognition framework using temporal convolutional networks on a multicore iot processor,” IEEE transactions on biomedical circuits and systems, vol. 14, no. 2, pp. 244–256, 2019.
  36. A. K. Clarke, S. F. Atashzar, A. Del Vecchio, D. Barsakcioglu, S. Muceli, P. Bentley, F. Urh, A. Holobar, and D. Farina, “Deep learning for robust decomposition of high-density surface emg signals,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 2, pp. 526–534, 2020.
  37. A. Tiwari and D. Joshi, “Design and validation of a real-time visual feedback system to improve minimum toe clearance (mtc) in transfemoral amputees,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1711–1722, 2021.
  38. P. Gulati, Q. Hu, and S. F. Atashzar, “Toward deep generalization of peripheral emg-based human-robot interfacing: A hybrid explainable solution for neurorobotic systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2650–2657, 2021.
  39. M. Ortiz-Catalan, B. Håkansson, and R. Brånemark, “Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 4, pp. 756–764, 2014.
  40. D. Chu, L.-Z. Liao, M. K.-P. Ng, and X. Wang, “Incremental linear discriminant analysis: A fast algorithm and comparisons,” IEEE transactions on neural networks and learning systems, vol. 26, no. 11, pp. 2716–2735, 2015.
  41. L. H. Smith, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, “Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 2, pp. 186–192, 2011.
  42. B. Yu, X. Zhang, L. Wu, X. Chen, and X. Chen, “A novel postprocessing method for robust myoelectric pattern-recognition control through movement pattern transition detection,” IEEE Transactions on Human-Machine Systems, 2019.
  43. S. Tam, M. Boukadoum, A. Campeau-Lecours, and B. Gosselin, “Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning,” Scientific Reports, vol. 11, no. 1, pp. 1–14, 2021.
  44. A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan et al., “A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition,” Nature Electronics, vol. 4, no. 1, pp. 54–63, 2021.
  45. X. Liu, J. Sacks, M. Zhang, A. G. Richardson, T. H. Lucas, and J. Van der Spiegel, “The virtual trackpad: An electromyography-based, wireless, real-time, low-power, embedded hand-gesture-recognition system using an event-driven artificial neural network,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 11, pp. 1257–1261, 2016.
  46. M. M.-C. Vidovic, H.-J. Hwang, S. Amsüss, J. M. Hahne, D. Farina, and K.-R. Müller, “Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 9, pp. 961–970, 2015.
  47. A. C. Turlapaty and B. Gokaraju, “Feature analysis for classification of physical actions using surface emg data,” IEEE Sensors Journal, vol. 19, no. 24, pp. 12 196–12 204, 2019.
  48. S. Pancholi and A. M. Joshi, “Novel time domain based upper-limb prosthesis control using incremental learning approach,” 2021.

Summary

We haven't generated a summary for this paper yet.