Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Fine-tuned mBERT for Translation Quality Estimation (2109.03914v1)

Published 8 Sep 2021 in cs.CL

Abstract: Quality Estimation (QE) is an important component of the machine translation workflow as it assesses the quality of the translated output without consulting reference translations. In this paper, we discuss our submission to the WMT 2021 QE Shared Task. We participate in Task 2 sentence-level sub-task that challenge participants to predict the HTER score for sentence-level post-editing effort. Our proposed system is an ensemble of multilingual BERT (mBERT)-based regression models, which are generated by fine-tuning on different input settings. It demonstrates comparable performance with respect to the Pearson's correlation and beats the baseline system in MAE/ RMSE for several language pairs. In addition, we adapt our system for the zero-shot setting by exploiting target language-relevant language pairs and pseudo-reference translations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shaika Chowdhury (8 papers)
  2. Naouel Baili (1 paper)
  3. Brian Vannah (1 paper)
Citations (5)