Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximately counting independent sets in bipartite graphs via graph containers (2109.03744v1)

Published 8 Sep 2021 in cs.DS and math.CO

Abstract: By implementing algorithmic versions of Sapozhenko's graph container methods, we give new algorithms for approximating the number of independent sets in bipartite graphs. Our first algorithm applies to $d$-regular, bipartite graphs satisfying a weak expansion condition: when $d$ is constant, and the graph is a bipartite $\Omega( \log2 d/d)$-expander, we obtain an FPTAS for the number of independent sets. Previously such a result for $d>5$ was known only for graphs satisfying the much stronger expansion conditions of random bipartite graphs. The algorithm also applies to weighted independent sets: for a $d$-regular, bipartite $\alpha$-expander, with $\alpha>0$ fixed, we give an FPTAS for the hard-core model partition function at fugacity $\lambda=\Omega(\log d / d{1/4})$. Finally we present an algorithm that applies to all $d$-regular, bipartite graphs, runs in time $\exp\left( O\left( n \cdot \frac{ \log3 d }{d } \right) \right)$, and outputs a $(1 + o(1))$-approximation to the number of independent sets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.