Papers
Topics
Authors
Recent
2000 character limit reached

A Bayesian Learning Algorithm for Unknown Zero-sum Stochastic Games with an Arbitrary Opponent

Published 8 Sep 2021 in cs.LG and cs.GT | (2109.03396v3)

Abstract: In this paper, we propose Posterior Sampling Reinforcement Learning for Zero-sum Stochastic Games (PSRL-ZSG), the first online learning algorithm that achieves Bayesian regret bound of $O(HS\sqrt{AT})$ in the infinite-horizon zero-sum stochastic games with average-reward criterion. Here $H$ is an upper bound on the span of the bias function, $S$ is the number of states, $A$ is the number of joint actions and $T$ is the horizon. We consider the online setting where the opponent can not be controlled and can take any arbitrary time-adaptive history-dependent strategy. Our regret bound improves on the best existing regret bound of $O(\sqrt[3]{DS2AT2})$ by Wei et al. (2017) under the same assumption and matches the theoretical lower bound in $T$.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 5 likes about this paper.