Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Ghost-DeblurGAN to Fiducial Marker Detection (2109.03379v3)

Published 8 Sep 2021 in eess.IV, cs.AI, cs.LG, and cs.RO

Abstract: Feature extraction or localization based on the fiducial marker could fail due to motion blur in real-world robotic applications. To solve this problem, a lightweight generative adversarial network, named Ghost-DeblurGAN, for real-time motion deblurring is developed in this paper. Furthermore, on account that there is no existing deblurring benchmark for such task, a new large-scale dataset, YorkTag, is proposed that provides pairs of sharp/blurred images containing fiducial markers. With the proposed model trained and tested on YorkTag, it is demonstrated that when applied along with fiducial marker systems to motion-blurred images, Ghost-DeblurGAN improves the marker detection significantly. The datasets and codes used in this paper are available at: https://github.com/York-SDCNLab/Ghost-DeblurGAN.

Citations (8)

Summary

We haven't generated a summary for this paper yet.