Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Malware Squid: A Novel IoT Malware Traffic Analysis Framework using Convolutional Neural Network and Binary Visualisation (2109.03375v1)

Published 8 Sep 2021 in cs.CR and cs.AI

Abstract: Internet of Things devices have seen a rapid growth and popularity in recent years with many more ordinary devices gaining network capability and becoming part of the ever growing IoT network. With this exponential growth and the limitation of resources, it is becoming increasingly harder to protect against security threats such as malware due to its evolving faster than the defence mechanisms can handle with. The traditional security systems are not able to detect unknown malware as they use signature-based methods. In this paper, we aim to address this issue by introducing a novel IoT malware traffic analysis approach using neural network and binary visualisation. The prime motivation of the proposed approach is to faster detect and classify new malware (zero-day malware). The experiment results show that our method can satisfy the accuracy requirement of practical application.

Citations (26)

Summary

We haven't generated a summary for this paper yet.