Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Worst-Case Optimal Adaptive Prefix-Free Coding (2109.02997v2)

Published 7 Sep 2021 in cs.DS, cs.IT, and math.IT

Abstract: Gagie and Nekrich (2009) gave an algorithm for adaptive prefix-free coding that, given a string $S [1..n]$ over the alphabet ${1, \ldots, \sigma}$ with $\sigma = o (n / \log{5 / 2} n)$, encodes $S$ in at most $n (H + 1) + o (n)$ bits, where $H$ is the empirical entropy of $S$, such that encoding and decoding $S$ take $O (n)$ time. They also proved their bound on the encoding length is optimal, even when the empirical entropy is high. Their algorithm is impractical, however, because it uses complicated data structures. In this paper we give an algorithm with the same bounds, except that we require $\sigma = o (n{1 / 2} / \log n)$, that uses no data structures more complicated than a lookup table. Moreover, when Gagie and Nekrich's algorithm is used for optimal adaptive alphabetic coding it takes $O (n \log \log n)$ time for decoding, but ours still takes $O (n)$ time.

Summary

We haven't generated a summary for this paper yet.