Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A second-order accurate, operator splitting scheme for reaction-diffusion systems in an energetic variational formulation (2109.02792v1)

Published 7 Sep 2021 in math.NA and cs.NA

Abstract: A second-order accurate in time, positivity-preserving, and unconditionally energy stable operator splitting numerical scheme is proposed and analyzed for the system of reaction-diffusion equations with detailed balance. The scheme is designed based on an energetic variational formulation, in which the reaction part is reformulated in terms of the reaction trajectory, and both the reaction and diffusion parts dissipate the same free energy. At the reaction stage, the reaction trajectory equation is approximated by a second-order Crank-Nicolson type method. The unique solvability, positivity-preserving, and energy-stability are established based on a convexity analysis. In the diffusion stage, an exact integrator is applied if the diffusion coefficients are constant, and a Crank-Nicolson type scheme is applied if the diffusion process becomes nonlinear. In either case, both the positivity-preserving property and energy stability could be theoretically established. Moreover, a combination of the numerical algorithms at both stages by the Strang splitting approach leads to a second-order accurate, structure-preserving scheme for the original reaction-diffusion system. Numerical experiments are presented, which demonstrate the accuracy of the proposed scheme.

Citations (11)

Summary

We haven't generated a summary for this paper yet.