Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient spectral conditions for graphs being $k$-edge-Hamiltonian or $k$-Hamiltonian (2109.01973v2)

Published 5 Sep 2021 in math.CO and math.SP

Abstract: A graph $G$ is $k$-edge-Hamiltonian if any collection of vertex-disjoint paths with at most $k$ edges altogether belong to a Hamiltonian cycle in $G$. A graph $G$ is $k$-Hamiltonian if for all $S\subseteq V(G)$ with $|S|\le k$, the subgraph induced by $V(G)\setminus S$ has a Hamiltonian cycle. These two concepts are classical extensions for the usual Hamiltonian graphs. In this paper, we present some spectral sufficient conditions for a graph to be $k$-edge-Hamiltonian and $k$-Hamiltonian in terms of the adjacency spectral radius as well as the signless Laplacian spectral radius. Our results could be viewed as slight extensions of the recent theorems proved by Li and Ning [Linear Multilinear Algebra 64 (2016)], Nikiforov [Czechoslovak Math. J. 66 (2016)] and Li, Liu and Peng [Linear Multilinear Algebra 66 (2018)]. Moreover, we shall prove a stability result for graphs being $k$-Hamiltonian, which could be regarded as a complement of two recent results of F\"{u}redi, Kostochka and Luo [Discrete Math. 340 (2017)] and [Discrete Math. 342 (2019)].

Summary

We haven't generated a summary for this paper yet.