Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology of univoque sets in real base expansions (2109.01460v2)

Published 3 Sep 2021 in math.CO and math.NT

Abstract: Given a positive integer $M$ and a real number $q \in (1,M+1]$, an expansion of a real number $x \in \left[0,M/(q-1)\right]$ over the alphabet $A={0,1,\ldots,M}$ is a sequence $(c_i) \in A{\mathbb N}$ such that $x=\sum_{i=1}{\infty}c_iq{-i}$. Generalizing many earlier results, we investigate in this paper the topological properties of the set $U_q$ consisting of numbers $x$ having a unique expansion of this form, and the combinatorial properties of the set $U_q'$ consisting of their corresponding expansions. We also provide shorter proofs of the main results of Baker in [B] by adapting the method given in [EJK] for the case $M=1$.

Summary

We haven't generated a summary for this paper yet.