Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Hand Hygiene Gestures with Leap Motion Controller (2109.00884v1)

Published 11 Aug 2021 in cs.CV and cs.LG

Abstract: The process of hand washing, according to the WHO, is divided into stages with clearly defined two handed dynamic gestures. In this paper, videos of hand washing experts are segmented and analyzed with the goal of extracting their corresponding features. These features can be further processed in software to classify particular hand movements, determine whether the stages have been successfully completed by the user and also assess the quality of washing. Having identified the important features, a 3D gesture tracker, the Leap Motion Controller (LEAP), was used to track and detect the hand features associated with these stages. With the help of sequential programming and threshold values, the hand features were combined together to detect the initiation and completion of a sample WHO Stage 2 (Rub hands Palm to Palm). The LEAP provides accurate raw positional data for tracking single hand gestures and two hands in separation but suffers from occlusion when hands are in contact. Other than hand hygiene the approaches shown here can be applied in other biomedical applications requiring close hand gesture analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.