Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Role of Explainability in Assuring Safety of Machine Learning in Healthcare (2109.00520v2)

Published 1 Sep 2021 in cs.LG and cs.AI

Abstract: Established approaches to assuring safety-critical systems and software are difficult to apply to systems employing ML where there is no clear, pre-defined specification against which to assess validity. This problem is exacerbated by the "opaque" nature of ML where the learnt model is not amenable to human scrutiny. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human-interpretable representations of ML models which can help users to gain confidence and build trust in the ML system. However, little work explicitly investigates the role of explainability for safety assurance in the context of ML development. This paper identifies ways in which XAI methods can contribute to safety assurance of ML-based systems. It then uses a concrete ML-based clinical decision support system, concerning weaning of patients from mechanical ventilation, to demonstrate how XAI methods can be employed to produce evidence to support safety assurance. The results are also represented in a safety argument to show where, and in what way, XAI methods can contribute to a safety case. Overall, we conclude that XAI methods have a valuable role in safety assurance of ML-based systems in healthcare but that they are not sufficient in themselves to assure safety.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yan Jia (25 papers)
  2. John McDermid (13 papers)
  3. Tom Lawton (5 papers)
  4. Ibrahim Habli (20 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.