Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Approximation Ratio of the $k$-Opt Heuristic for the Euclidean Traveling Salesman Problem (2109.00069v3)

Published 31 Aug 2021 in cs.DS, cs.DM, and math.CO

Abstract: The $k$-Opt heuristic is a simple improvement heuristic for the Traveling Salesman Problem. It starts with an arbitrary tour and then repeatedly replaces $k$ edges of the tour by $k$ other edges, as long as this yields a shorter tour. We will prove that for 2-dimensional Euclidean Traveling Salesman Problems with $n$ cities the approximation ratio of the $k$-Opt heuristic is $\Theta(\log n / \log \log n)$. This improves the upper bound of $O(\log n)$ given by Chandra, Karloff, and Tovey in 1999 and provides for the first time a non-trivial lower bound for the case $k\ge 3$. Our results not only hold for the Euclidean norm but extend to arbitrary $p$-norms with $1 \le p < \infty$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.