Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on visible islands (2109.00022v3)

Published 31 Aug 2021 in math.CO and cs.CG

Abstract: Given a finite point set $P$ in the plane, a subset $S \subseteq P$ is called an island in $P$ if $conv(S) \cap P = S$. We say that $S\subset P$ is a visible island if the points in $S$ are pairwise visible and $S$ is an island in $P$. The famous Big-line Big-clique Conjecture states that for any $k \geq 3$ and $\ell \geq 4$, there is an integer $n = n(k,\ell)$, such that every finite set of at least $n$ points in the plane contains $\ell$ collinear points or $k$ pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size $13$.

Summary

We haven't generated a summary for this paper yet.