Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trims and Extensions of Quadratic APN Functions (2108.13280v3)

Published 30 Aug 2021 in cs.IT, cs.DM, and math.IT

Abstract: In this work, we study functions that can be obtained by restricting a vectorial Boolean function $F \colon \mathbb{F}_2n \rightarrow \mathbb{F}_2n$ to an affine hyperplane of dimension $n-1$ and then projecting the output to an $n-1$-dimensional space. We show that a multiset of $2 \cdot (2n-1)2$ EA-equivalence classes of such restrictions defines an EA-invariant for vectorial Boolean functions on $\mathbb{F}_2n$. Further, for all of the known quadratic APN functions in dimension $n < 10$, we determine the restrictions that are also APN. Moreover, we construct 6,368 new quadratic APN functions in dimension eight up to EA-equivalence by extending a quadratic APN function in dimension seven. A special focus of this work is on quadratic APN functions with maximum linearity. In particular, we characterize a quadratic APN function $F \colon \mathbb{F}_2n \rightarrow \mathbb{F}_2n$ with linearity of $2{n-1}$ by a property of the ortho-derivative of its restriction to a linear hyperplane. Using the fact that all quadratic APN functions in dimension seven are classified, we are able to obtain a classification of all quadratic 8-bit APN functions with linearity $27$ up to EA-equivalence.

Citations (6)

Summary

We haven't generated a summary for this paper yet.