Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Lightweight Machine Learning Assisted Power Optimization for Minimum Error in NOMA-CRS over Nakagami-$m$ channels (2108.12591v1)

Published 28 Aug 2021 in cs.IT and math.IT

Abstract: Non-orthogonal multiple access based cooperative relaying system (NOMA-CRS) has been proposed to alleviate the decay in spectral efficiency of the conventional CRS. However, existing NOMA-CRS studies assume perfect successive interference canceler at the relay and mostly investigate sum-rate whereas the error performance has not been taken into consideration. In this paper, we analyze error performance of the NOMA-CRS and the closed-form bit error probability (BEP) expression is derived over Nakagami-m fading channels. Then, thanks to the high performance of ML in challenging optimization problems, a joint power sharing-power allocation (PS-PA) scheme is proposed to minimize the bit error rate (BER) of the NOMA-CRS. The proposed ML-assisted optimization has a very low online implementation complexity. Based on provided extensive simulations, theoretical BEP analysis is validated. Besides, the proposed ML-aided PS-PA provides minimum BER (MBER) and outperforms previous PA strategies for the NOMA-CRS notably.

Citations (4)

Summary

We haven't generated a summary for this paper yet.