Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Position-Invariant Truecasing with a Word-and-Character Hierarchical Recurrent Neural Network (2108.11943v2)

Published 26 Aug 2021 in cs.CL

Abstract: Truecasing is the task of restoring the correct case (uppercase or lowercase) of noisy text generated either by an automatic system for speech recognition or machine translation or by humans. It improves the performance of downstream NLP tasks such as named entity recognition and LLMing. We propose a fast, accurate and compact two-level hierarchical word-and-character-based recurrent neural network model, the first of its kind for this problem. Using sequence distillation, we also address the problem of truecasing while ignoring token positions in the sentence, i.e. in a position-invariant manner.

Citations (2)

Summary

We haven't generated a summary for this paper yet.