Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital simulation of convex mixtures of Markovian and non-Markovian single qubit Pauli channels on NISQ devices (2108.11343v3)

Published 25 Aug 2021 in quant-ph

Abstract: Quantum algorithms for simulating quantum systems provide a clear and provable advantage over classical algorithms in fault-tolerant settings. There is also interest in quantum algorithms and their implementation in Noisy Intermediate Scale Quantum (NISQ) settings. In these settings, various noise sources and errors must be accounted for when executing any experiments. Recently, NISQ devices have been verified as versatile testbeds for simulating open quantum systems and have been used to simulate simple quantum channels. Our goal is to solve the more complicated problem of simulating convex mixtures of single qubit Pauli channels on NISQ devices. We consider two specific cases: mixtures of Markovian channels that result in a non-Markovian channel (M+M=nM) and mixtures of non-Markovian channels that result in a Markovian channel (nM+nM=M). For the first case, we consider mixtures of Markovian single-qubit Pauli channels; for the second case, we consider mixtures of Non-Markovian single-qubit depolarising channels, which is a special case of the single-qubit Pauli channel. We show that efficient circuits, which account for the topology of currently available devices and current levels of decoherence, can be constructed by heuristic approaches that reduce the number of CNOT gates used in our circuit. We also present a strategy for regularising the process matrix so that the process tomography yields a completely positive and trace-preserving (CPTP) channel.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Manin, Y.: Computable and uncomputable. Sovetskoye Radio, Moscow 128 (1980) Lloyd [1996] Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996) Childs and Wiebe [2012] Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996) Childs and Wiebe [2012] Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  2. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996) Childs and Wiebe [2012] Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  3. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 (2012) Childs et al. [2018] Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  4. Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences 115(38), 9456–9461 (2018) Childs et al. [2019] Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  5. Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019) Childs et al. [2021] Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  6. Childs, A.M., Su, Y., Tran, M.C., Wiebe, N., Zhu, S.: Theory of trotter error with commutator scaling. Physical Review X 11(1), 011020 (2021) Berry et al. [2007] Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  7. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007) Berry et al. [2015] Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  8. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). IEEE Campbell [2019] Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  9. Campbell, E.: Random compiler for fast hamiltonian simulation. Physical review letters 123(7), 070503 (2019) Papageorgiou and Zhang [2012] Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  10. Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for hamiltonian simulation. Quantum Information Processing 11(2), 541–561 (2012) Low and Chuang [2019] Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  11. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Berry et al. [2020] Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  12. Berry, D.W., Childs, A.M., Su, Y., Wang, X., Wiebe, N.: Time-dependent hamiltonian simulation with l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling. Quantum 4, 254 (2020) Lau et al. [2022] Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  13. Lau, J.W.Z., Haug, T., Kwek, L.C., Bharti, K.: Nisq algorithm for hamiltonian simulation via truncated taylor series. SciPost Physics 12(4), 122 (2022) Lau et al. [2021] Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  14. Lau, J.W.Z., Bharti, K., Haug, T., Kwek, L.C.: Quantum assisted simulation of time dependent hamiltonians. arXiv preprint arXiv:2101.07677 (2021) Daley et al. [2022] Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  15. Daley, A.J., Bloch, I., Kokail, C., Flannigan, S., Pearson, N., Troyer, M., Zoller, P.: Practical quantum advantage in quantum simulation. Nature 607(7920), 667–676 (2022) Funcke et al. [2022] Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  16. Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, M., Stornati, P., Wang, X.: Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices. Philosophical Transactions of the Royal Society A 380(2216), 20210062 (2022) González-Cuadra et al. [2022] González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  17. González-Cuadra, D., Zache, T.V., Carrasco, J., Kraus, B., Zoller, P.: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Physical Review Letters 129(16), 160501 (2022) Takeshita et al. [2020] Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  18. Takeshita, T., Rubin, N.C., Jiang, Z., Lee, E., Babbush, R., McClean, J.R.: Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Physical Review X 10(1), 011004 (2020) García-Pérez et al. [2020] García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  19. García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6(1), 1–10 (2020) Sun et al. [2021] Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  20. Sun, S., Shih, L.-C., Cheng, Y.-C.: Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. arXiv preprint arXiv:2106.12882 (2021) Han et al. [2021] Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  21. Han, J., Cai, W., Hu, L., Mu, X., Ma, Y., Xu, Y., Wang, W., Wang, H., Song, Y., Zou, C.-L., et al.: Experimental simulation of open quantum system dynamics via trotterization. Physical Review Letters 127(2), 020504 (2021) Breuer and Petruccione [2002] Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  22. Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, ??? (2002) Ángel Rivas and Huelga [2012] Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  23. Rivas, Huelga, S.F.: Open Quantum Systems. Springer, ??? (2012) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  24. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics 17(5), 821–825 (1976) Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  25. Lindblad, G.: On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2), 119–130 (1976) Caruso et al. [2014] Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  26. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Reviews of Modern Physics 86(4), 1203 (2014) Breuer et al. [2009] Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  27. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters 103(21), 210401 (2009) Rivas et al. [2010] Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  28. Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Physical Review Letters 105(5), 050403 (2010) Li et al. [2018] Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  29. Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-markovianity: A hierarchy. Physics Reports 759, 1–51 (2018) Pollock et al. [2018] Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  30. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Physical Review Letters 120(4), 040405 (2018) Wolf et al. [2008] Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  31. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Physical Review Letters 101(15), 150402 (2008) Chruściński and Wudarski [2013] Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  32. Chruściński, D., Wudarski, F.A.: Non-markovian random unitary qubit dynamics. Physics Letters A 377(21-22), 1425–1429 (2013) Wudarski and Chruściński [2016] Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  33. Wudarski, F.A., Chruściński, D.: Markovian semigroup from non-markovian evolutions. Physical Review A 93(4), 042120 (2016) Chruściński and Wudarski [2015] Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  34. Chruściński, D., Wudarski, F.A.: Non-markovianity degree for random unitary evolution. Physical Review A 91(1), 012104 (2015) Vacchini [2012] Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  35. Vacchini, B.: A classical appraisal of quantum definitions of non-markovian dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 45(15), 154007 (2012) Hall et al. [2014] Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  36. Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-markovianity. Physical Review A 89(4), 042120 (2014) Uriri et al. [2020] Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  37. Uriri, S.A., Wudarski, F., Sinayskiy, I., Petruccione, F., Tame, M.S.: Experimental investigation of markovian and non-markovian channel addition. Physical Review A 101(5), 052107 (2020) Siudzińska and Chruściński [2020] Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  38. Siudzińska, K., Chruściński, D.: Quantum evolution with a large number of negative decoherence rates. Journal of Physics A: Mathematical and Theoretical 53(37), 375305 (2020) Siudzińska [2022a] Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  39. Siudzińska, K.: Non-markovianity criteria for mixtures of noninvertible pauli dynamical maps. Journal of Physics A: Mathematical and Theoretical 55(21), 215201 (2022) Siudzińska [2022b] Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  40. Siudzińska, K.: Phase-covariant mixtures of non-unital qubit maps. Journal of Physics A: Mathematical and Theoretical 55(40), 405303 (2022) Abraham et al. [2019] Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  41. Abraham, H., AduOffei, Agarwal, R., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562110 Stinespring [1955] Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  42. Stinespring, W.F.: Positive functions on c*-algebras. Proceedings of the American Mathematical Society 6(2), 211–216 (1955) Huang et al. [2020] Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  43. Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Zhang, Z.-Y., Chen, D.-Y., Zhang, X., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Science Bulletin 65(4), 286–292 (2020) Utagi et al. [2020] Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  44. Utagi, S., Rao, V.N., Srikanth, R., Banerjee, S.: On singularities, mixing and non-markovianity of pauli dynamical maps. arXiv preprint arXiv:2011.04053 (2020) Jagadish et al. [2020] Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  45. Jagadish, V., Srikanth, R., Petruccione, F.: Convex combinations of cp-divisible pauli channels that are not semigroups. Physics Letters A 384(35), 126907 (2020) Megier et al. [2017] Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  46. Megier, N., Chruściński, D., Piilo, J., Strunz, W.T.: Eternal non-markovianity: from random unitary to markov chain realisations. Scientific reports 7(1), 1–11 (2017) Wudarski and Petruccione [2017] Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  47. Wudarski, F.A., Petruccione, F.: Robustness and fragility of markovian dynamics in a qubit dephasing channel. Physical Review A 95(5), 052130 (2017) Shrikant et al. [2018] Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  48. Shrikant, U., Srikanth, R., Banerjee, S.: Non-markovian dephasing and depolarizing channels. Physical Review A 98(3), 032328 (2018) King and Ruskai [2001] King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  49. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Transactions on information theory 47(1), 192–209 (2001) Graydon et al. [2022] Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  50. Graydon, M.A., Skanes-Norman, J., Wallman, J.J.: Designing stochastic channels. arXiv preprint arXiv:2201.07156 (2022) Pillay et al. [2023] Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  51. Pillay, S., Sinayskiy, I., Jembere, E., Petruccione, F.: A multi-class swap-test classifier. arXiv preprint arXiv:2302.02994 (2023) Cross et al. [2015] Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  52. Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Physical Review A 92(1), 012327 (2015) Kraus [1971] Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  53. Kraus, K.: General state changes in quantum theory. Annals of Physics 64(2), 311–335 (1971) Chuang and Nielsen [1997] Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  54. Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44(11-12), 2455–2467 (1997) Nielsen and Chuang [2010] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  55. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, ??? (2010) James et al. [2005] James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  56. James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: On the measurement of qubits. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538. World Scientific, ??? (2005) Wolf [2012] Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  57. Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M 5 (2012) Choi [1975] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  58. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear algebra and its applications 10(3), 285–290 (1975) Jamiołkowski [1972] Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  59. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972) Jozsa [1994] Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994) Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
  60. Jozsa, R.: Fidelity for mixed quantum states. Journal of modern optics 41(12), 2315–2323 (1994)
Citations (4)

Summary

We haven't generated a summary for this paper yet.