Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Layer-wise Customized Weak Segmentation Block and AIoU Loss for Accurate Object Detection (2108.11021v1)

Published 25 Aug 2021 in cs.CV

Abstract: The anchor-based detectors handle the problem of scale variation by building the feature pyramid and directly setting different scales of anchors on each cell in different layers. However, it is difficult for box-wise anchors to guide the adaptive learning of scale-specific features in each layer because there is no one-to-one correspondence between box-wise anchors and pixel-level features. In order to alleviate the problem, in this paper, we propose a scale-customized weak segmentation (SCWS) block at the pixel level for scale customized object feature learning in each layer. By integrating the SCWS blocks into the single-shot detector, a scale-aware object detector (SCOD) is constructed to detect objects of different sizes naturally and accurately. Furthermore, the standard location loss neglects the fact that the hard and easy samples may be seriously imbalanced. A forthcoming problem is that it is unable to get more accurate bounding boxes due to the imbalance. To address this problem, an adaptive IoU (AIoU) loss via a simple yet effective squeeze operation is specified in our SCOD. Extensive experiments on PASCAL VOC and MS COCO demonstrate the superiority of our SCOD.

Summary

We haven't generated a summary for this paper yet.